Abstract

We combine interferometric detection of single gold nanoparticles, single molecule microscopy, and fluorescence lifetime measurement to study the modification of the fluorescence decay rate of an emitter close to a nanoparticle. In our experiment, gold particles with a diameter of 15 nm were attached to single dye molecules via double-stranded DNA of different lengths. Nanoparticle-induced lifetime modification (NPILM) has promise in serving as a nanoscopic ruler for the distance range well beyond 10 nm, which is the upper limit of fluorescence resonant energy transfer (FRET). Furthermore, the simultaneous detection of single nanoparticles and fluorescent molecules presented in this work provides new opportunities for single molecule biophysical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call