Abstract

Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.

Highlights

  • Finding new and innovative treatments for cancer is a major problem across the world (Siegel et al, 2020)

  • Alternative approaches of combined chemo-immunotherapy includes co-delivery of chemotherapeutics and monoclonal antibodies into porous silicon NPs, which have been effective in stimulating complement activation, antibody-dependent cell cytotoxicity (ADCC), and immune response against cancer cells (Li et al, 2018)

  • NPs play an important role in delivery chemotherapy but have shown great potential for applications in immunotherapy

Read more

Summary

Introduction

Finding new and innovative treatments for cancer is a major problem across the world (Siegel et al, 2020). Nanoparticle (NP)-based drug delivery systems have shown many advantages in cancer treatment, such as good pharmacokinetics, precise targeting of tumor cells, reduction of side effects, and drug resistance (Dadwal et al, 2018; Palazzolo et al, 2018). NPs have shown certain advantages when it comes to anti-tumor multidrug resistance (MDR), as they provide platforms for drug combination therapy as well as inhibit the function of some mechanisms of drug resistance, such as efflux transporters on cell membranes (Li et al, 2016).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call