Abstract

AbstractThis study proposes a novel and simple in‐house design of a nanoparticle tracking analysis (NTA) device for the online characterization of nanoparticles in an aqueous solution. The particle size distribution of two sets of model nanoparticles, for example, transparent (SiO2) and opaque (TiO2) materials with respect to water as a dispersion medium could be successfully analyzed. Experiments are conducted using two different laser wavelengths of 632.8 (red) and 510 nm (green) and a range of concentrations. The accuracy of the green laser is larger compared to the red laser for all particle concentrations used. The measured average diameter using the presented in‐house NTA setup is in the acceptable range compared to the electron microscopy data. The average diameter of the transparent (SiO2) and opaque (TiO2) samples is calculated as 36.29 and 27.26 nm using NTA, 36.44 and 27.8 nm analyzing field emission scanning electron microscopy images, and 23.97 and 19.7 nm analyzing transmission electron microscopy images. In the new viewing sample holder, nanoparticles undergo mere Brownian motion with no bulk drift velocity. The effect of solid concentration and wavelength of the laser light on the performance of the NTA sensor is investigated, and the optimal concentration range for model particles is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.