Abstract
In the recent past, the resonance energy transfer studies using metallic nanoparticles has become a matter of quintessence in modern technology, which considerably extends its applications in probing specific biological and chemical processes. In the present study, metallic-silver nanoparticles of 2-4 nm (diameter) capped with hexanethiol ligand are developed and dispersed in ferroelectric liquid crystal (FLC). The morphology of nanoparticles was characterized using HR-TEM and SEM techniques. Furthermore, a systematic study of energy transfer between the host FLC material (as donors) and metallic-silver nanoparticles (as acceptors) has been explored employing steady state and time resolved fluorescence spectroscopic techniques. The nanoparticle based surface energy transfer (NSET) parameters viz., transfer efficiency, transfer rate, and proximity distance between donor and acceptor, have been determined for NSET couples (FLC material-metallic-silver nanoparticle) composites. It is observed that various NSET parameters and quenching efficiency follow a linear dependence on the concentration of metallic-silver nanoparticles in host FLC material. The nonradiative energy transfer and superquenching effect were analyzed with the help of Stern-Volmer plots. The impact of present study about superquenching effect of the silver nanoparticles can be used for sensing applications that require high degree sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.