Abstract

Abstract This paper reports the study of the effect of different ions (monovalent, bivalent, and multiple ions) on nanosilica-stabilized CO2 foam generation. CO2 foam was generated by co-injecting CO2/5,000 ppm nanosilica dispersion (dispersed in different concentrations of brine) into a sandstone core under 1,500 psi and room temperature. A sapphire observation cell was used to determine the foam texture and foam stability. Pressure drop across the core was measured to estimate the foam mobility. The results indicated that more CO2 foam was generated as the NaCl concentration increased from 1.0% to 10%. Also the foam texture became denser and foam stability improved with the NaCl concentration increase. The CO2 foam mobility decreased from 13.1 md/cp to 2.6 md/cp when the NaCl concentration increased from 1% to 10%. For the bivalent ions, the generated CO2 foam mobility decreased from 19.7 md/cp to 4.8 md/cp when CaCl2 concentration increased from 0.1% to 1.0%. Synthetic produced water with total dissolved solids of 17,835 ppm was prepared to investigate the effect of multiple ions on foam generation. The results showed that dense, stable CO2 foam was generated as the synthetic produced water and nanosilica dispersion/CO2 flowed through a porous medium. The lifetime of the foam was observed to be more than two days as the foam stood at room temperature. Mobility of the foam was calculated as 5.2 md/cp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call