Abstract

Abstract Nanoparticles of LiMnPO4 were fabricated in rod, elongated as well as cubic shapes. The 1D Li+ preferred diffusion direction for each shape was determined via electron diffraction spot patterns. The shape of nano-LiMnPO4 varied the diffusion coefficient of Li+ because the Li+ diffusion direction and the path length were different. The particles with the shortest dimension along the b-axis provided the highest diffusion coefficient, resulting in the highest gravimetric capacity of 135, 100 and 60 mAh g−1 at 0.05C, 1C and 10C, respectively. Using ball-milling, a higher loading of nano-LiMnPO4 in the electrode was achieved, increasing the volumetric capacity to 263 mAh cm−3, which is ca. 3.5 times higher than the one obtained by hand-mixing of electrode materials. Thus, the electrochemical performance is governed by both the diffusion coefficient of Li+, which is dependent on the shape of LiMnPO4 nanoparticles and the secondary composite structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.