Abstract

Bilirubin (BR) is a protective antioxidant; however, when its conjugation and excretion are impaired, as in neonatal and hereditary jaundice, BR accumulates and may cause severe neurotoxicity. Here, we report a novel mechanism for ZnO nanoparticle (NP)-sensitized BR degradation via defect-mediated nonradiative energy transfer pathway. Among different sizes and shapes, ZnO particles with diameter of 5 nm having very high concentration of defect states are found to be the most effective catalyst, which particularly follows a pseudofirst-order kinetics validating the Langmuir–Hinshelwood model of surface catalysis. The nontoxic wide band gap ZnO NPs essentially transmit defect-mediated visible optical radiation, which is not supposed to interfere with the conventional phototherapy process. Therefore, the recyclable ZnO nanocatalysts essentially invite an added advantage in potential therapeutic applications and/or in a flow-device that has been explored in the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.