Abstract

Macrophages participate centrally in atherosclerosis, and macrophage markers (eg, CD68, MAC-3) correlate well with lesion severity and therapeutic modulation. On the basis of the avidity of lesional macrophages for polysaccharide-containing supramolecular structures such as nanoparticles, we have developed a new positron emission tomography (PET) agent with optimized pharmacokinetics to allow in vivo imaging at tracer concentrations. A dextranated and DTPA-modified magnetofluorescent 20-nm nanoparticle was labeled with the PET tracer 64Cu (1 mCi/0.1 mg nanoparticles) to yield a PET, magnetic resonance, and optically detectable imaging agent. Peak PET activity 24 hours after intravenous injection into mice deficient in apolipoprotein E with experimental atherosclerosis mapped to areas of high plaque load identified by computed tomography such as the aortic root and arch and correlated with magnetic resonance and optical imaging. Accumulated dose in apolipoprotein E-deficient aortas determined by gamma counting was 260% and in carotids 392% of respective wild-type organs (P<0.05 both). Autoradiography of aortas demonstrated uptake of the agent into macrophage-rich atheromata identified by Oil Red O staining of lipid deposits. The novel nanoagent accumulated predominantly in macrophages as determined by fluorescence microscopy and flow cytometry of cells dissociated from aortas. This report establishes the capability of a novel trimodality nanoparticle to directly detect macrophages in atherosclerotic plaques. Advantages include improved sensitivity; direct correlation of PET signal with an established biomarker (CD68); ability to readily quantify the PET signal, perform whole-body vascular surveys, and spatially localize and follow the trireporter by microscopy; and clinical translatability of the agent given similarities to magnetic resonance imaging probes in clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.