Abstract
Infections caused by antibiotic-resistant bacteria continue to challenge the medical field, mostly due to conventional treatments inefficiency after years of overuse and misuse in clinics. Cases of multiresistant bacterial infections are increasing every year. This led the World Health Organization (WHO) to update the list of resistant micro-organisms that represent greatest threat to human health. To stop the growing of the global resistance to antimicrobial drugs, new alternatives are necessary to fight these pathogens. In this context, antimicrobials peptides (AMPs) emerge as a new alternative to the current antibiotics in the pharmaceutical market. To improve their antimicrobial activity, different strategies are being developed to overcome antibiotic-resistant bacteria. Nanotechnology can be used to further potentiate antimicrobials, by increasing their activity or assisting in their delivering, frequently using nanostructured materials. There are already several antimicrobial peptides used in therapeutics, some of them coupled to nanoparticles. Additionally, detection strategies taking advantage of peptides as recognition agents are also being explored. Several examples are detailed of peptides that are specific to bacterial targets, and how that specificity can be used in diagnostics systems, coupled with nanoparticles-based signal detection approaches. Thus, the same properties of AMPs that enable specific neutralization can be harnessed to detect the very same bacteria they target. Overall, this review is focused on current research on nanoparticles coupled to antimicrobial peptides and how they can be used against multidrug-resistant bacteria as antimicrobials and/or as detection system. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.