Abstract

A micro-slide chamber was used to screen and rank sixteen functionalized fluorescent silica nanoparticles (SiNP) of different sizes (10, 50, 100 and 200 nm) and surface coatings (aminated, carboxylated, methyl-PEG1000ylated, and methyl-PEG2000ylated) according to their capacity to permeate porcine jejunal mucus. Variables investigated were influence of particle size, surface charge and methyl-PEGylation. The anionic SiNP showed higher transport through mucus whereas the cationic SiNP exhibited higher binding with lower transport. A size-dependence in transport was identified – 10 and 50 nm anionic (uncoated or methyl-PEGylated) SiNP showed higher transport compared to the larger 100 and 200 nm SiNP. The cationic SiNP of all sizes interacted with the mucus, making it more viscous and less capable of swelling. In contrast, the anionic SiNP (uncoated or methyl-PEGylated) caused minimal changes in the viscoelasticity of mucus. The data provide insights into mucus-NP interactions and suggest a rationale for designing oral nanomedicines with improved mucopermeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.