Abstract

Core@shell architectures provide a rich platform for designing new geometries composed of various functional nanomaterials. Recent work has shown that Au@MoS2 core@shell structures exhibit strong light–matter interactions and promising optoelectronic device performance. However, the role of the core on Au@MoS2 growth dynamics is not well understood, leaving the question of if this unusual structure is extendable to other materials systems unanswered. Herein, we present unambiguous evidence of MoS2 encapsulation of new crystalline and even noncrystalline core materials, including Ag and silica. High-resolution transmission electron microscopy shows intimate contact between each core material and their highly crystalline, conformal MoS2 shells. We propose a generalized growth mechanism for these structures, which is supported by density functional theory energy calculations and implies wider applicability of transition metal dichalcogenide encapsulation to other functional nanoparticles. Further, we demonst...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.