Abstract

Stimulator of interferon genes (STING) are located in the endoplasmic reticulum of cells, which have been demonstrated to show considerable potentials to achieve efficient antitumor immunity by inducing various pro-inflammatory cytokines and chemokines, such as type I interferons. A variety of STING agonists have been prepared for STING activation, and many of them have been promoted to preclinical trials or clinical applications for the immunotherapy of cancers. However, the intrinsic disadvantages of the small molecule STING agonists can limit the in vivo application and final therapeutic efficacy due to low bioavailability of targeting tissues. Moreover, a cascade of physiological barriers for in vivo STING activation also limit the accumulation of STING agonists in targeting tissues. Drug delivery systems play an important role to improve the STING activation efficiency. In recent years, a variety of nanoparticle-mediated STING agonist delivery systems have been engineered and exploited to address the challenges related to the in vivo STING activation, including liposomes, polymeric micelles, polymersomes, and so on. In this review article, the progresses concerning STING agonists and related delivery systems in recent years will be summarized and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.