Abstract

Recent advancements in in vitro transcribed mRNA (IVT-mRNA) vaccine manufacturing have attracted considerable interest as advanced methods for combating viral infections. The respiratory mucosa is a primary target for pathogen attack, but traditional intramuscular vaccines are not effective in generating protective ion mucosal surfaces. Mucosal immunization can induce both systemic and mucosal immunity by effectively eliminating microorganisms before their growth and development. However, there are several biological and physical obstacles to the administration of genetic payloads, such as IVT-mRNA and DNA, to the pulmonary and nasal mucosa. Nucleic acid vaccine nanocarriers should effectively protect and load genetic payloads to overcome barriers i.e., biological and physical, at the mucosal sites. This may aid in the transfection of specific antigens, epithelial cells, and incorporation of adjuvants. In this review, we address strategies for delivering genetic payloads, such as nucleic acid vaccines, that have been studied in the past and their potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.