Abstract

Lung cancer is one of the most common cancers and a leading cause of death, with poor prognosis and high unmet clinical need. Chemotherapy is a common part of the treatment, either alone or in combination with other treatment modalities, but with limited efficacy and severe side effects. Encapsulation of drugs into nanoparticles can enable a more targeted delivery with reduced off-target toxicity. Delivery to the lungs is however often insufficient due to various biological barriers in the body and in the tumor microenvironment. Here we demonstrate that by incorporating drug-loaded nanoparticles into air-filled microbubbles, a more effective targeting to the lungs can be achieved. Fluorescence imaging and mass spectrometry revealed that the microbubbles could significantly improve accumulation of drug in the lungs of mice, compared to injecting either the free drug by itself or only the drug-loaded nanoparticles. Therapeutic efficacy was verified in a preclinical mouse model with non-small cell lung cancer, monitoring tumor growth by luminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call