Abstract
Peripheral nerve injuries, arising from a diverse range of etiologies such as trauma and underlying medical conditions, pose substantial challenges in both clinical management and subsequent restoration of functional capacity. Addressing these challenges, nanoparticles have emerged as a promising therapeutic modality poised to augment the process of peripheral nerve regeneration. However, a comprehensive elucidation of the complicated mechanistic foundations responsible for the favorable effects of nanoparticle-based therapy on nerve regeneration remains imperative. This review aims to scrutinize the potential of nanoparticles as innovative therapeutic carriers for promoting peripheral nerve repair. This review encompasses an in-depth exploration of the classifications and synthesis methodologies associated with nanoparticles. Additionally, we discuss and summarize the multifaceted roles that nanoparticles play, including neuroprotection, facilitation of axonal growth, and efficient drug delivery mechanisms. Furthermore, we present essential considerations and highlight the potential synergies of integrating nanoparticles with emerging technologies. Through this comprehensive review, we highlight the indispensable role of nanoparticles in propelling advancements in peripheral nerve regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.