Abstract

AbstractDue to environmental concerns traditional eutectic tin-lead solder is gradually being replaced in electronic assemblies by “lead-free” solders. During this transition, nanoparticle technology is also being investigated to see whether improvements in joint reliability for high temperature applications can be made. Nanoparticles can be used to harden the solder via Zener pinning of the grain boundaries and reduce fatigue failure. This paper explores the effects of adding Silica nanoparticles to SnAgCu solder, and how the mechanical properties induced in the solder vary with temperature. It is found that above 100 °C the mechanical response and microstructure of the normal and nanoparticle enhanced solders converge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.