Abstract

Mode-coupling theory is developed and employed to compute the nanoparticle diffusion coefficient in polymer solutions. Theoretical results are compared with molecular dynamics simulation data for a similar model. The theory properly reproduces the simulated effects of the nanoparticle size, mass, and concentration on the nanoparticle diffusion coefficient. Within the mode-coupling theory framework, a microscopic interpretation of the nonmonotonic dependence of the diffusion coefficient on the nanoparticle concentration is given in terms of structural and dynamic effects. Both the size dependence and mass dependence of the diffusion coefficient indicate a pronounced breakdown of the Stokes-Einstein relation for the present model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.