Abstract

X-ray photon correlation spectroscopy measurements were used to quantify the dynamics of bare and bimodal grafted silica nanoparticles mixed with PEO melts of different molecular weights. In dilute polymer nanocomposite (PNC) samples, we find diffusive NP behavior as described by the Stokes–Einstein relationship so long as the adsorbed PEO polymer layer is taken into account in determining both the effective NP size and its role on composite viscosity. The size of this bound layer was found to be approximately 2Rg, where Rg is the chain radius of gyration. We also expanded our system to investigate how the dynamics of grafted NPs differ from bare NPs with an adsorbed layer. We showed that the dynamics again can be determined by an effective NP radius at a scale smaller than the effective interparticle spacing; however, at larger length scales, the morphology and grafting parameters play a major role in the system dynamics. These results allow us to quantify NP ordering driven by polymer crystallization. It has previously been speculated that behavior is controlled by the relative ratio of time scale of crystal growth and the diffusive time scale of the NPs, a Peclet number. When the former time scale is longer, then the NPs are expected to be segregated into the interlamellar amorphous zones, while the NPs are too slow to be reorganized in the opposite case. We show here that this conjecture is quantitatively correct and the demarcation in behavior occurs for Pe = 1. Thus, we provide a way to estimate a critical spherulite growth rate for any semicrystalline PNC, at which a given NP can be ordered. Together, the results of this study permit us to tunably design PNCs through directed dispersion of NPs in a polymer matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call