Abstract

To evaluate the effect of poly(lactic-co-glycolic acid) (PLGA) nanoparticles delivering pDC316-BMP4-EGFP plasmid into rabbit adipose-derived stem cells (ADSCs) in vitro and chondrogenesis of the bone morphogenetic protein 4 (BMP-4)--transfected ADSCs seeded onto poly(L-lactic-co-glycolic acid) (PLLGA) scaffold in a rabbit model. Cell viability and transfection efficiency of PLGA nanoparticles were measured by Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) and flow cytometry. The BMP-4 and chondrogenesis markers were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Thirty rabbits (60 knees) with full-thickness cylinder articular cartilage defects (diameter, 4.5 mm; depth, 0.8 mm) on the femoral trochlea were divided into a group in which the BMP-4--transfected ADSCs were seeded onto PLLGA scaffold and implanted into the defects (group ABNP), a group with untransfected ADSCs seeded onto scaffold (group ABP), and a group with a scaffold without cells (group P). Outcomes were evaluated by histology, Rudert score, Pineda score, and scanning electronic microscopy by 2 blinded observers at weeks 6 and 12 postoperatively. Statistical analyses were performed with analysis of variance and the Kruskal-Wallis test. The statistical significance level was set at P < .05. The expression of chondrogenesis-related genes and proteins was significantly increased in BMP-4--transfected ADSCs in vitro (P < .05). The cell viability was 79.86% ± 5.04% after 24 hours. The transfection efficiency was 25.86% ± 4.27% after 72 hours. Defects in group ABNP showed the best in vivo cartilage regeneration. At week 12, the Rudert scores in group ABNP (7.00 ± 1.75) were better than those in group ABP (6.00 ± 2.00) or group P (5.00 ± 1.75) (P < .05), as were the Pineda scores (2.50 ± 3.00, 5.00 ± 2.00, and 6.00 ± 1.75, respectively; P < .001). BMP-4 plasmid can be successfully delivered into ADSCs by PLGA nanoparticles and promoted in vitro chondrogenesis. When compared with the control cells, BMP-4--transfected ADSCs seeded onto PLLGA scaffold significantly improve in vivo chondrogenesis in a rabbit articular defect model. PLGA nanoparticles and BMP-4 have potential for gene therapy in the treatment of chondral defects of the knee.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.