Abstract

The lung surface is an ideal pathway to the bloodstream for nanoparticle-based drug delivery. Thus far, research has focused on the lungs of adults, and little is known about nanoparticle behavior in the immature lungs of infants. Here, using nonlinear dynamical systems analysis and in vivo experimentation in developing animals, we show that nanoparticle deposition in postnatally developing lungs peaks at the end of bulk alveolation. This finding suggests a unique paradigm, consistent with the emerging theory that as alveoli form through secondary septation, alveolar flow becomes chaotic and chaotic mixing kicks in, significantly enhancing particle deposition. This finding has significant implications for the application of nanoparticle-based inhalation therapeutics in young children with immature lungs from birth to 2 y of age.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.