Abstract
The development of highly efficient anode materials is critical for enhancing the current output of microbial electrochemical cells. In this study, Au and Pd nanoparticle decorated graphite anodes were developed and evaluated in a newly designed multi-anode microbial electrolysis cell (MEC). The anodes decorated with Au nanoparticles produced current densities up to 20-fold higher than plain graphite anodes by Shewanella oneidensis MR-1, while those of Pd-decorated anodes with similar morphologies produced 50–150% higher than the control. Significant positive linear regression was obtained between the current density and the particle size (average Feret's diameter and average area), while the circularity of the particles showed negative correlation with current densities. On the contrary, no significant correlation was evident between the current density and the particle density based on area fraction and particle counts. These results demonstrated that nano-decoration can greatly enhance the performance of microbial anodes, while the chemical composition, size and shape of the nanoparticles determined the extent of the enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.