Abstract
Homeopathy is controversial due to its use of very highly diluted medicines (high potencies/dynamisations). We used a multi-technology approach to examine dilutions of two commonly used homeopathic medicines: an insoluble metal, Cuprum metallicum, and a soluble plant tincture, Gelsemium sempervirens, for the presence of nanoparticles (NPs) of original substance. The homeopathic medicines tested were specially prepared, according to the European pharmacopoeia standards. We compared the homeopathic dilutions/dynamisations with simple dilutions and controls. Using Mass Spectrometry (Single Particle-Inductively Coupled Plasma-Mass Spectrometry) and Dynamic Light Scattering (DLS) we could not find the expected copper in the 4cH potentisation and could not confirm the results previously obtained by Chikramane et al (2010). For Gelsemium medicines, using sensitive chromatography (HPLC-UV) up to a dilution level of 6 dH (3cH = dilution 10e-6), there was no significant difference in alkaloid content between a simple dilution and a homeopathic potency.For higher potentisations, however, NP tracking analysis findings revealed the presence of particles in all samples (except for pure water). The measurements showed large differences in particle quantities, mean particle sizes and standard deviations of the mean sizes between manufacturing lines of different starting material.There was always more material in potentised medicines than in potentised pure water. Gelsemium yielded the largest quantity of material (36 times more than that from copper at the same potentisation, 30 cH). The shapes and the chemical composition of the material are differentiable between different medicines and controls. Potentisation influences specifically the nature of NPs detected. This material demonstrates that the step-by-step process (dynamised or not) does not match with the theoretical expectations in a dilution process. The Avogadro/Loschmidt limit is not relevant at all. It was not possible to reproduce the findings of Chikramane et al (2010) using inductively coupled plasma-mass spectrometry with copper. Copper NPs could not be detected at 4cH and above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.