Abstract

The development of ultrasensitive and rapid methods for the detection of bacterial spores is important for medical diagnostics of infectious diseases. While Surface-Enhanced Raman Spectroscopic (SERS) techniques have been increasingly demonstrated for achieving this goal, a key challenge is the development of sensitive and stable SERS substrates or probes. This Minireview highlights recent progress in exploring metal nanoparticle-based substrates, especially gold nanoparticle-based substrates, for the detection of biomarkers released from bacterial spores. One recent example involves assemblies of gold nanoparticles on a gold substrate for the highly sensitive detection of dipicolinic acid (DPA), a biomarker for bacterial spores such as Bacillus anthracis. This type of substrate exploits a strong SERS effect produced by the particle-particle and particle-substrate plasmonic coupling. It is capable of accurate speciation of the biomarker but also selective detection under various reactive or non-reactive conditions. In the case of detecting Bacillus subtilis spores, the limit of detection is quite comparable (0.1 ppb for DPA, and 1.5 × 10(9) spores per L (or 2.5 × 10(-14) M)) with those obtained using silver nanoparticle-based substrates. Implications of the recent findings for improving the gold nanoparticle-based SERS substrates with ultrahigh sensitivity for the detection of bacterial spores are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call