Abstract

In order to explore a superior washcoat material to give full play to the catalytic activity of perovskite active components on the monolithic catalysts, three novel types of LaCoO3/washcoat/cordierite monolith catalysts were prepared by a facile two-step procedure which employed the cordierite honeycomb ceramic as the monolith substrate, the nano-oxides (ZrO2, ɤ-Al2O3, TiO2) as the washcoat, and the perovskite of LaCoO3 as the active components. The blank cordierite, powdered LaCoO3, semi-manufactured monolithic catalysts (washcoat/cordierite), and manufactured monolithic catalysts (LaCoO3/washcoat/cordierite) were characterized by XRD, SEM, XPS, N2 adsorption-desorption, H2-TPR, and ultrasonic test, and their catalytic activities and catalytic stability were evaluated by the toluene oxidation test. The research results indicate that the nanoparticles coated on the cordierite substrate as the washcoat can give full play to the catalytic ability of the LaCoO3 active components and also showed high catalytic stability. However, the catalytic properties of the monolithic catalysts vary notably with the species of nano-washcoat. Among all the catalysts, the porous honeycomb surface structure, uniform distribution, high ratio of surface adsorbed oxygen, and strong reducing ability together give the LaCoO3/ZrO2/cordierite monolithic catalyst the highest catalytic activity on the oxidation of toluene at low temperature, which could be attributed to the excellent interactions of perovskite and nano-ZrO2 washcoat. Therefore, the nano-oxides, especially the nano-ZrO2, have a broad practical application potential for toluene oxidation at low temperature as the washcoat of perovskite-based monolithic catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.