Abstract
With the recent development in nanoscale patterning techniques, the potential of practical applications of nanometer-size structures for signal processing has been growing continuously. Experimental findings on the manipulation of optical signals in nanostructures have recently given rise to a widely addressed scientific area—subwavelength nano-optics. Here, we demonstrate that spin waves in microscopic ferromagnetic film structures represent a superb object for realization of the principles of nano-optics in the microwave frequency range. We show experimentally that by using the unique properties of spin waves, one can easily channelize, split, and manipulate submicrometer-width spin-wave beams propagating in microscopic magnetic-film waveguides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.