Abstract
Direct and efficient intracellular delivery of enzymes to cytosol holds tremendous therapeutic potential while remaining an unmet technical challenge. Herein, an ultrasound (US)-propelled nanomotor approach and a high-pH-responsive delivery strategy are reported to overcome this challenge using caspase-3 (CASP-3) as a model enzyme. Consisting of a gold nanowire (AuNW) motor with a pH-responsive polymer coating, in which the CASP-3 is loaded, the resulting nanomotor protects the enzyme from release and deactivation prior to reaching an intracellular environment. However, upon entering a cell and exposure to the higher intracellular pH, the polymer coating is dissolved, thereby directly releasing the active CASP-3 enzyme to the cytosol and causing rapid cell apoptosis. In vitro studies using gastric cancer cells as a model cell line demonstrate that such a motion-based active delivery approach leads to remarkably high apoptosis efficiency within a significantly shorter time and with a lower amount of CASP-3 compared to other control groups not involving US-propelled nanomotors. For instance, the reported nanomotor system can achieve 80% apoptosis of human gastric adenocarcinoma cells within only 5 min, which dramatically outperforms other CASP-3 delivery approaches. These results indicate that the US-propelled nanomotors may act as a powerful vehicle for cytosolic delivery of active therapeutic proteins, which would offer an attractive means to enhance the current landscape of intracellular protein delivery and therapy. While CASP-3 is selected as a model protein in this study, the same nanomotor approach can be readily applied to a variety of different therapeutic proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.