Abstract

Abstract ATP, adenosine-5′-triphosphate, was determined by recycling in an enzyme reactor with co-immobilized pyruvate kinase and hexokinase in the presence of glucose, NAD+, and phosphoenolpyruvate, PEP. Recycling produces glucose-6-phosphate which is converted to an equivalent amount of NADH by glucose-6-phosphate dehydrogenase. The NADH is detected at a graphite flow-through electrode modified with an adsorbed 3,3′-bis(benzo[a]phenoxazin-7-ium, 5-amino-9-(diethylamino))1,4,N,N′-diamidobenzene, BPT. Oxidation of NADH takes place at 0 mM vs Ag/AgCl due to the adsorbed phenoxazine. The amplification factor is directly proportional to the residence time in the reactor and it is increased as the flow rate decreases; it becomes350 at a flow rate of 0.07 ml/min. The amplification factor can be increased further by a controlled stop-time recycling; it became 1200 at a stop-time of 12 min. A theoretical expression for the amplification factor was derived and it shows that the amplification depends o n the resid...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call