Abstract

The ability to control the position of a mesoscopic object with nanometric precision is important for the rapid progress of nanoscience. One of the most promising tools to achieve such control is optical tweezers, which trap objects near the focus of a laser beam. However, the drawbacks of conventional tweezers include a trapping volume that is diffraction-limited and significant brownian motion of trapped nanoobjects. Here, we report the first experimental realization of three-dimensional nanometric optical tweezers that are based on nanostructured substrates. Using electromagnetically coupled pairs of gold nanodots in a standard optical tweezers set-up, we create an array of subwavelength plasmonic optical traps that offer a significant increase in trapping efficiency. The nanodot optical near-fields reduce the trapping volume beyond the diffraction limit and quench brownian motion of the trapped nanoparticles by almost an order of magnitude as compared to conventional tweezers operating under the same trapping conditions. Our tweezers achieve nanoscale control of entities at significantly smaller laser powers and open new avenues for nanomanipulation of fragile biological objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call