Abstract

The metal–support interaction plays an important role in gold catalysis. We employ here crystalline cubic (α-) and hexagonal (β-) phases of heterometallic fluoride NaYF4 nanoparticles (NPs), obtained by the decomposition of a single source precursor [NaY(TFA)4(diglyme)] (TFA = trifluoroacetate), as nonoxide supports for gold catalysts. Using an isostructural gadolinium analogue, we also obtained doped α-NaYF4:Gd3+ and β-NaYF4:Gd3+ NPs. A successful deposition of ∼1% by weight gold NPs of average size 5–6.5 nm on these doped and undoped metal fluorides using HAuCl4·3H2O afforded Au/NaYF4 catalysts which were thoroughly characterized by using several physicochemical techniques such as X-ray diffraction, Brunauer–Emmett–Teller analysis, high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. A comparative study of the above catalysts for different oxidation reactions show that while for the aerobic oxidation of trans-stilbene in solution phase, they are either better (in terms of stilbene conversion) or at par (in terms of trans-stilbene oxide yield) in comparison to the reference catalyst Au/TiO2 of the World Gold Council, their activity toward CO oxidation reactions in gas phase remains much less than that of gold catalysts supported on metal oxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call