Abstract

Nanometric metal overlayer catalysts have been developed as novel catalyst structures with high three-way catalytic performance for practical applications. The metal overlayer is prepared via a dry process using pulsed arc plasma deposition, unlike wet coating processes for conventional powder catalysts containing nanoparticles. The key point to achieving high performance is the extremely high turnover frequencies for specific chemical reactions catalyzed by a large two-dimensional surface compared with metal nanoparticles. This overview study presents the preparation, structure, performance, reaction mechanism, and thermal stability of metal overlayer catalysts, focusing on rhodium (Rh) and catalytic conversion of nitric oxide (NO). Rh plays a pivotal role in the reduction of NO to N2 in automotive three-way catalytic converters. The potential benefit of the overlayer structure is the minimum loading of precious metal, such as Rh, which is limited and expensive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call