Abstract

Previously we described a video-based scattered-light alignment (SLA) system, capable of nanometer-scale alignment accuracy. In order to meet highly accurate alignment with low optical transparency in x-ray masks, we performed the modifications of alignment marks and an optical microscope imaging system on the conventional SLA system. The advanced SLA system has achieved a high alignment accuracy of 10.2–15.7 nm (|mean|+3σ) using a silicon carbide (SiC) x-ray mask of 18% optical transparency, coated with 5 nm thick chrome (Cr) film as an etching stop, with four different processed wafers: nitride, oxide, poly-Si, and aluminum. The different SiC membranes of 2–5 μm in thickness did not have an effect on the alignment accuracy in the nitride wafer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call