Abstract

An ammonia leaching process was utilized to extract Co, Ni and Cu from oceanic polymetallic nodules, whereas an acid leaching process was utilized to extract Co, Ni, Cu, Zn and Mn from cobalt-rich crusts. Both processes produced nanometer materials—ammonia leaching residue and acid leaching residue. A systematic study was conducted on the phase, composition and physicochemistry properties of these residues. The result shows that both residues contain a large amount of nanometer minerals. Ammonia l eaching residue mainly consists of rhodochrosite, with the average grain diameter of 17.9 nm; whereas the acid leaching residue mainly consists of well-developed bassanite, with the average grain deameter of 9.5 nm. The bassanite also has a microporous structure, the volume of the pore space is 1.23 × 10−2 mL/g. Both the ammonia and acid leaching residues have a large specific surface area, and they display a strong adsorption capacity to saturate sodium chloride vapour, N2 and SO2. Both residues have high contents of rare earth elements, and most of these elements exist in the state of ionic adsorption. The content of σ FeO is high. The P2O5 enrichment is observable in acid leaching residues. The unique composition and nanometer solid properties of the leaching residues displayed their potential value and promised a bright future for their application in the field of environmental protection and materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.