Abstract

This paper deals with nanometer positioning in the presence of friction. The object researched is a ball-screw-driven and linear-ball-guide-supported table system. For such system, models that do not account for friction can only be applicable to describe the macrodynamic behavior which is significantly different from the microdynamic one. A PID controller is designed with high-loop gain to suppress the effect of friction. The controller parameters are calculated by pole placement according to macrodynamics, no identification of friction and friction model are necessary. Experiment and simulation results indicate that nanometer positioning can be realized in this system by the controller. In point-to-point (PTP) positioning for step heights from 0.1μm to 1mm, the positioning error is within ±5 nm and the response characteristics are satisfactory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.