Abstract

Bulk phase binary mixture of two rotator phase forming alkanes, n-tricosane (C23H48) and n-octacosane (C28H58), has been previously studied. C23H48 exists in the RII and RI phases, whereas C28H58 exists in the RIII and RIV phases. Over a certain range of composition, this binary mixture was found to exist in RII, RI and an intervening mesophase was reported to be the hexatic phase, wherein the long-range two-dimensional in-plane hexagonal lattice order of the RII is lost and what remains is molecules present in hexagonal geometry without long-range positional correlation between individual hexagons. Upon confinement in cylindrical anodized alumina pores 200 nm wide, on the one hand, the temperature range of the hexatic phase was found to extend, and on the other hand, it underwent increased molecular ordering compared to the hexatic phase in bulk, exhibiting two counter-reacting behaviors in confinement. We provide here a temperature-dependent X-ray diffraction study and a theoretical approach combining the Landau and Flory-Huggins theories to, first, understand the underlying mechanism leading to emergence of the hexatic phase and then to explain the effect of confinement on it in the light of finite size and interfacial interaction between the alkanes and alumina pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.