Abstract

Optical-based distance measurements are essential for tracking biomolecular conformational changes, drug discovery, and cell biology. Traditional Forster resonance energy transfer (FRET) is efficient for separation distances up to 100 A. We report the first successful application of a dipole-surface type energy transfer from a molecular dipole to a nanometal surface that more than doubles the traditional Forster range (220 A) and follows a 1/R(4) distance dependence. We appended a 1.4 nm Au cluster to the 5' end of one DNA strand as the energy acceptor and a fluorescein (FAM) to the 5' end of the complementary strand as the energy donor. Analysis of the energy transfer on DNA lengths (15, 20, 30, 60bp), complemented by protein-induced DNA bending, provides the basis for fully mapping the extent of this dipole surface type mechanism over its entire usable range (50-250 A). Further, protein function is fully compatible with these nanometal-DNA constructs. Significantly extending the range of optical based methods in molecular rulers is an important leap forward for biophysics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.