Abstract

Electronic detection of DNA oligomers offers the promise of rapid, miniaturized DNA analysis across various biotechnological applications. However, known all-electrical methods, which solely rely on measuring electrical signals in transducers during probe-target DNA hybridization, are prone to nonspecific electrostatic and electrochemical interactions, subsequently limiting their specificity and detection limit. Here, we demonstrate a nanomechanoelectrical approach that delivers ultra-robust specificity and a 100-fold improvement in detection limit. We drive nanostructural DNA strands tethered to a graphene transistor to oscillate in an alternating electric field and show that the transistor-current spectra are characteristic and indicative of DNA hybridization. We find that the inherent difference in pliability between unpaired and paired DNA strands leads to the spectral characteristics with minimal influence from nonspecific electrostatic and electrochemical interactions, resulting in high selectivity and sensitivity. Our results highlight the potential of high-performance DNA analysis based on miniaturized all-electronic settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call