Abstract
Compression elasticity of glucagon amyloid fibrils in the transverse direction was investigated by a nanoindentation approach based on atomic force microscopy (AFM). With force-volume mapping, we obtained the correlations between radially applied force and compression of amyloid fibrils, from which the radial compressive elasticity can be deduced. The estimated elastic modulus at three typical locations of fibrils varied from (0.72±0.80) GPa to (1.26±0.62) GPa under small external forces, implying the structural heterogeneity of different fibrils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.