Abstract
Accurate local temperature measurement at micro and nanoscales requires thermometry with high resolution because of ultra-low thermal transport. Among the various methods for measuring temperature, optical techniques have shown the most precise temperature detection, with resolutions reaching (~10−9 K). In this work, we present a nanomechanical device with nano-Kelvin resolution (~10−9 K) at room temperature and 1 atm. The device uses a 20 nm thick silicon nitride (SiN) membrane, forming an air chamber as the sensing area. The presented device has a temperature sensing area >1 mm2 for micro/nanoscale objects with reduced target placement constraints as the target can be placed anywhere on the >1 mm2 sensing area. The temperature resolution of the SiN membrane device is determined by deflection at the center of the membrane. The temperature resolution is inversely proportional to the membrane’s stiffness, as detailed through analysis and measurements of stiffness and noise equivalent temperature (NET) in the pre-stressed SiN membrane. The achievable heat flow resolution of the membrane device is 100 pW, making it suitable for examining thermal transport on micro and nanoscales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.