Abstract

A graphene film was synthesized using chemical vapor deposition and then transferred to a flexible poly(ethylene terephthalate) (PET) substrate. The nanomechanical properties of the graphene/PET (G/PET) system were investigated by nanoindentation. The hardness (H) and reduced modulus (Er) of PET and G/PET were calculated using the Oliver–Pharr method with corrections for creep and material pile-up around the contact. The H and Er of the G/PET were 97% and 16% higher respectively than on the PET substrate. The increase in Er can be attributed to the high in-plane elastic modulus of graphene, the smaller increase in Er than H merely reflecting the far-field nature of the elastic stress field compared to the plastic stress field. The creep behavior of the PET is strongly hindered by the presence of the graphene overlayer. A simple volume contribution model was adopted to calculate the elastic modulus of the graphene overlayer and the computed values were of the right magnitude for graphene film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.