Abstract

Calcium-fluoride-like deposits play a key role in caries prevention by topical fluoride. Previous microhardness analyses have introduced errors due to a substrate effect, and thereby could not substantiate the early loss of these deposits. To address this question, we applied Atomic Force Microscopy (AFM) and a nano-indentation technique in this study to characterize the nano-mechanical properties and topographic structure of enamel surfaces following topical fluoride treatment. The deposits were found to have a low nano-hardness and a high nano-wear depth, which explains the early loss of calcium-fluoride-like deposits. However, a 22% increase in the fluoride concentration could still be detected on the treated enamel surface following the removal of the surface deposits, justifying the long-term effectiveness of topical fluoride treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.