Abstract
The effects of energetic treatments, crosslinking, and plasma modification on the surface mechanical properties and deformation behavior of ultrahigh molecular weight polyethylene (UHMWPE) were examined in light of nanoindentation experiments performed with a surface force microscope. Samples of UHMWPE were subjected to relatively high-dose gamma irradiation, oxygen ion implantation, and argon ion beam treatment. A range of crosslinking was achieved by varying the radiation dose. In addition, low-temperature plasma treatment with hexamethyldisiloxane/O2 and C3F6 was investigated for comparison. The surface mechanical properties of the treated UHMWPE samples are compared with those of untreated UHMWPE samples used as controls. Surface adhesion measurements obtained from the nanoindentation material responses are also discussed in terms of important treatment parameters. Results demonstrate that high-dose oxygen ion implantation, argon ion beam treatment, and low-temperature C3F6 plasma modification are effective treatments for enhancing the surface mechanical properties of UHMWPE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.