Abstract

The float process produces flat glass with a tin-rich surface due to contact with the molten metal bath. The incorporation of tin into the glass network is expected to modify the mechanical properties of the surface and the relative durability of the two sides of the material. In this work nanoindentation was used to evaluate the elastic modulus and hardness of a 2mm thick commercial float glass. The near-surface elastic modulus (depths<400nm) of both sides of the glass was elevated by up to 10%, and could not be attributed solely to the presence of tin. However, slight differences in hardness (<10%) between the air and tin sides of the float glass were observed. These results suggest that tin may alter the flow properties of the glass, but the elastic modulus changes are masked by other structural and chemical differences between the air and tin sides of the float glass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.