Abstract

Supramolecular helices have unique properties and many potential applications, such as chiral separation and asymmetric catalysis. Mechanical property (stability) of the supramolecular helix plays important roles in their functions. Due to the limitation of detection method, it is quite challenging to investigate nanomechanical properties of individual supramolecular helices stabilized by pure supramolecular interactions. Here atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) is used to study the nanomechanical properties of a thermal-responsive supramolecular helix. The unwinding force plateau is observed in the force-extension curve, and the rupture force of the helix is dependent on the loading rate. In addition, the force-induced unwinding process is reversible and there is almost no energy dissipation in the process. Furthermore, the result of thermal shape-fluctuation analysis shows that the persistence length of the supramolecular helix is about 222nm, which is much larger than helical structure formed by double-stranded DNA (dsDNA). However, because of its unique backbone structure, the supramolecular helix exhibits higher dynamic flexibility during force-induced deformation, since the persistence length determined from the stretching experiment is much smaller (1.1nm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call