Abstract

In this work, carbon films were deposited by magnetron sputtering on silicon substrate. The effect of sputtering time on the surface wettability and mechanical properties of carbon films was investigated. Contact angle measurement was used to analyse surface wettability, and the nanomechanical properties were characterized by nanoindentation. In experiments, the sputtering time was 45 min, 60 min, 75 min and 90 min. The measurement results show that the maximum film hardness was achieved for sputtering time 90 min, with a value of 2.34 GPa. Longer sputtering time resulted in preferable mechanical properties. It was analyzed that the size of the crystal grains on the substrate surface and thickness of the films were increased with the increment of sputtering time. The surface roughness decreased with the increase of sputtering time. Moreover, Youngs modulus increased with sputtering time and the maximum value was 16.94 GPa. The contact angle measurement results show that the prepared films take on the hydrophilicity. The minimum contact angle was achieved for sputtering time 45 min with a value of 54o.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call