Abstract

Mechanical properties of thermoelectric (TE) materials are crucial for fabricating efficient and endurable TE devices. In this study, polycrystalline Bi3Se2Te thin films are grown on c-plane sapphire substrates at 250 °C and helium gas pressure of 6.5 × 10−1 Torr using pulsed laser deposition (PLD). The structural, compositional, morphological and mechanical properties of Bi3Se2Te thin films are studied. The Bi3Se2Te thin films are highly c-axis oriented structure and exhibit the stoichiometric compositions of Bi3Se2Te phase. The hardness and Young’s modulus of the Bi3Se2Te thin films are 5.6 ± 0.2 GPa and 197.2 ± 5.4 GPa, respectively, which determined by nanoindentation tests with the continuous stiffness measurement (CSM) mode. The true hardness of the Bi3Se2Te thin films is also calculated using the energy principle of nanoindentation contact. The micro-Vicker indentation-induced fracture behavior of the Bi3Se2Te thin films is observed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call