Abstract

Nanomechanical shuttles transferring small groups of electrons or even individual electrons from one electrode to another offer a novel approach to the problem of controlled charge transport. Here, we report the fabrication of shuttle-junctions consisting of a 20 nm diameter gold nanoparticle embedded within the gap between two gold electrodes. The nanoparticle is attached to the electrodes through a monolayer of flexible organic molecules which play the role of springs so that when a sufficient voltage bias is applied, then nanoparticle starts to oscillate transferring electrons from one electrode to the other. Current-voltage characteristics for the fabricated devices have been measured and compared with the results of our computer simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call