Abstract

The mechanical properties of living cells and tissues are important for a variety of functional processes in vivo, including cell adhesion, migration, proliferation and differentiation. Changes in mechano-cellular phenotype, for instance, are associated with cancer progression. Atomic force microscopy (AFM) is an enabling technique that topographically maps and quantifies the mechanical properties of complex biological matter in physiological aqueous environments at the nanometer length scale. Recently we applied AFM to spatially resolve the distribution of nanomechanical stiffness across human breast cancer biopsies in comparison to healthy tissue and benign tumors. This led to the finding that AFM provides quantitative mechano-markers that may have translational significance for the clinical diagnosis of cancer. Here, we provide a comprehensive description of sample preparation methodology, instrumentation, data acquisition and analysis that allows for the quantitative nanomechanical profiling of unadulterated tissue at submicron spatial resolution and nano-Newton (nN) force sensitivity in physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.