Abstract

Human hair is a nanocomposite biological fiber with well-characterized microstructures. Nanomechanical characterization of human hair can help to evaluate the effect of cosmetic products on hair surface, can provide a better understanding of the physicochemical properties of a wide variety of composite biological systems, and can provide the dermatologists with some useful markers for the diagnosis of hair disorders. The paper presents systematic studies of nanomechanical properties of human hair including hardness, elastic modulus and creep, using the nanoindentation technique. The samples include Caucasian, Asian and African hair at virgin, chemo-mechanically damaged and treated conditions. Hair morphology was studied using scanning electron microscopy (SEM). Indentation experiments were performed on both the surface and cross-section of the hair, and the indents were studied using SEM. The nanomechanical properties of hair as a function of hair composition, microstructure, ethnicity, damage and treatment are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.