Abstract

In this study, the nanomechanical damage was investigated on the annealed Si/SiGe strained-layer superlattices (SLSs) deposited using an ultrahigh-vacuum chemical vapor deposition (UHVCVD). Nanoscratch, nanoindenter, atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to determine the nanomechanical behavior of the SiGe films. With a constant force applied, greater hardness number and larger coefficients of friction ( μ) were observed on the samples that had been annealed at 600 °C, suggesting that annealing of the Si/SiGe SLSs can induce greater shear resistance. AFM morphological studies of the Si/SiGe SLSs revealed that pile-up phenomena occurred on both sides of each scratch, with the formation of some pellets and microparticles. The Si/SiGe SLSs that had been subjected to annealing under various conditions exhibited significantly different features in their indentation results. Indeed, the TEM images reveal slight dislocation propagation in the microstructures. Thus, the hardness and elastic modulus can be increased slightly after annealing treatment because the existence of comparatively unstable microstructures. It is suggested that cracking phenomena dominate the damage cause of Si/SiGe SLSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.