Abstract

Nanomechanical biosensors based on atomic force microscopy (AFM) cantilevers have garnered considerable attention. AFM cantilevers are devices that can detect a target either via a surface functionalization process based on immobilization through molecular adsorption, or through the selective chemical binding of a specific molecule, transforming the device into a specific biosensor. In this study, we demonstrate that functionalized AFM cantilevers could be used, in a process involving self-assembling layers, to create a homogeneous surface layer of the widely used herbicide mesotrione. Controlled experiments to evaluate its detection were performed, and binding between mesotrione and its target molecule, 4-hydroxyphenylpyruvate dioxygenase (HPPD), was evaluated using deflection curves of functionalized cantilevers interacting with mesotrione. The cantilevers worked as nanomechanical sensors inside a fluid cell device, under different concentrations of HPPD diluted in PBS. After evaluating increasing concentrations of HPPD, the deflection curves showed a clear, dose-dependent pattern. The homogeneous dispersion of mesotrione on the cantilevers was assessed by confocal microscopy, and this corroborated the functionalization method. Thus, the results obtained by this functionalized cantilever presented a high efficiency in detecting binding between HPPD and mesotrione molecules at concentrations as low as 17[Formula: see text]ng mL[Formula: see text]. In this way, as a preliminary step for a future environmental contaminants nanosensor development, the described detection method showed a suitable capability for molecular recognition at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.